【教学目标】
1. 理解集合的概念。
2.理解集合中元素的性质,熟记常用数集符号;提高分析问题解决问题的能力。
3.自主学习,合作探究,学会研究元素与集合关系的方法。
4. 掌握集合两种表示法:列举法、描述法。
【教学重难点】集合的含义、常用数集及其记法、集合中的元素的特性、集合与元素的属于关系。
【学习过程】
一、 预习导航,要点指津
导入新课
问题1: 军训前学校通知:8月21日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合.
问题2: ①请我们班的全体女生起立!接下来问:"咱班的所有女生能不能构成一个集合啊?"
②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?
③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.
④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?
⑤世界上最高的山能不能构成一个集合?
⑥世界上的高山能不能构成一个集合?
⑦问题⑥说明集合中的元素具有什么性质?
⑧由实数1、2、3、1组成的集合有几个元素?
⑨问题⑧说明集合中的元素具有什么性质?
⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?
结论1:
、一般地,指定的某些对象的全体称为集合,标记:A,B