2017-2018学年人教A版必修四 1.2.2 同角三角函数的基本关系 教案
2017-2018学年人教A版必修四       1.2.2 同角三角函数的基本关系    教案第1页

 1.2.2 同角三角函数的基本关系

一、教学目标:

知识与技能:

(1) 使学生掌握同角三角函数的基本关系;

(2)已知某角的一个三角函数值,求它的其余各三角函数值;

(3)利用同角三角函数关系式化简三角函数式;

(4)利用同角三角函数关系式证明三角恒等式;

(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.

过程与方法:

  由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.

情感、态度与价值观

通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.

二.重点难点

重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.

  难点:根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.

三、教材与学情分析

与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.

同角三角函数的基本关系式将"同角"的四种不同的三角函数直接或间接地联系起来,在使用时一要注意"同角",至于角的表达形式是至关重要的,如sin24π+cos24π=1等,二要注意这些