2.2 函数的表示法(二)
2.3 映射
学习目标 1.会用解析法及图像法表示分段函数.2.给出分段函数,能研究有关性质.3.了解映射的概念.
知识点一 分段函数
思考 设集合A=R,B=[0,+∞).对于A中任一元素x,规定:若x≥0,则对应B中的y=x;若x<0,则对应B中的y=-x.按函数定义,这一对是不是函数?
梳理 (1)一般地,分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.
(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的________;各段函数的定义域的交集是________.
(3)作分段函数图像时,应在同一坐标系内分别作出每一段的图像.
知识点二 映射
思考 设A={三角形},B=R,对应关系f:每个三角形对应它的周长.这个对应是不是函数?它与函数有何共同点?
梳理 映射的概念
两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有________的一个元素y与它对应,就称这种对应为从A到B的映射,记作f:A→B.
A中的元素x称为原像,B中的对应元素y称为x的像,记作f:x→y.