1.1.2 四种命题
教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.
教学重点:四种命题的概念及相互关系.
教学难点:四种命题的相互关系.
教学过程:
一、复习准备:
指出下列命题中的条件与结论,并判断真假:
(1)矩形的对角线互相垂直且平分;
(2)函数有两个零点.
二、讲授新课:
1. 教学四种命题的概念:
原命题 逆命题 否命题 逆否命题 若,则 若,则 若,则 若,则 ①写出命题"菱形的对角线互相垂直"的逆命题、否命题及逆否命题,并判断它们的真假.
(师生共析学生说出答案教师点评)
②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)同位角相等,两直线平行;
(2)正弦函数是周期函数;
(3)线段垂直平分线上的点与这条线段两个端点的距离相等.
(学生自练个别回答教师点评)
2. 教学四种命题的相互关系:
①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.
②四种命题的相互关系图:
③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.
④结论一:原命题与它的逆否命题同真假;
结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.
⑤例2 若,则.(利用结论一来证明)(教师引导学生板书教师点评)
3. 小结:四种命题的概念及相互关系.
三、巩固练习:
1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.
(1)函数有两个零点;(2)若,则;
(3)若,则全为0;(4)全等三角形一定是相似三角形;
(5)相切两圆的连心线经过切点.
2. 作业:教材P9页 第2(2)题 P10页 第3(1)题