两角和与差的正弦、余弦和正切公式
【学习目标】
1.能以两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,了解它们的内在联系.
2.掌握两角和与差的正弦、余弦、正切公式,并能灵活运用这些公式进行简单的恒等变换.
【要点梳理】
要点一:两角和的余弦函数
两角和的余弦公式:
要点诠释:
(1)公式中的都是任意角;
(2)和差角的余弦公式不能按分配律展开,即;
(3)公式使用时不仅要会正用,还要能够逆用,在很多时候,逆用更能简捷地处理问题.如:由能迅速地想到
;
(4)第一章所学的部分诱导公式可通过本节公式验证;
(5)记忆:公式右端的两部分为同名三角函数积,连接符号与等号左边角的连接符号相反.
要点二:两角和与差的正弦函数
两角和正弦函数
在公式中用代替,就得到:
两角差的正弦函数
要点诠释:
(1)公式中的都是任意角;
(2)与和差角的余弦公式一样,公式对分配律不成立,即;
(3)和差公式是诱导公式的推广,诱导公式是和差公式的特例.如
当或中有一个角是的整数倍时,通常使用诱导公式较为方便;
(4)使用公式时,不仅要会正用,还要能够逆用公式,如化简时,不要将和展开,而应采用整体思想,进行如下变形: