(3)甲、乙、丙三人不能参加;
(4)甲、乙、丙三人只能有1人参加.
【精彩点拨】 本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的"含"与"不含"作出正确分析和判断,弄清每步从哪里选,选出多少等问题.
【自主解答】 (1)从中任取5人是组合问题,共有C=792种不同的选法.
(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C=36种不同的选法.
(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C=126种不同的选法.
(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C=3种选法;再从另外9人中选4人,有C种选法.共有CC=378种不同的选法.
解答简单的组合问题的思考方法
1.弄清要做的这件事是什么事.
2.选出的元素是否与顺序有关,也就是看看是不是组合问题.
3.结合两个计数原理,利用组合数公式求出结果.
[再练一题]
1.现有10名教师,其中男教师6名,女教师4名.
(1)现要从中选2名去参加会议,有多少种不同的选法?
(2)选出2名男教师或2名女教师去外地学习的选法有多少种?
【解】 (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C==45.
(2)可把问题分两类:第1类,选出的2名是男教师有C种方法;第2类,选出的2 名是女教师有C种方法,即C+C=21(种).
有限制条件的组合问题
高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学