说明:求曲线在某点处的切线方程的基本步骤:
(1)求出P点的坐标;
(2)求出函数在点处的变化率 ,得到曲线在点的切线的斜率;
(3)利用点斜式求切线方程.
2.导函数:
由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,
即:
注:在不致发生混淆时,导函数也简称导数.
3.函数在点处的导数、导函数、导数 之间的区别与联系。
(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
(2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数
(3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。
例1.已知函数, x0=-2。
(1)分别对Δx=2,1,0.5求在区间[x0,x0+Δx]上的平均变化率,并画出过点(x0,)的相应割线;
(2)求函数在x0=-2处的导数,并画出曲线在点(-2,4)处的切线。
解:(1)Δx=2,1,0.5时,区间[x0,x0+Δx]相应为[-2,0],[-2,-1],[-2,-1.5]。在这些区间上的平均变化率分别为