②P(μ-2σ<X≤μ+2σ)=0.954_4。
③P(μ-3σ<X≤μ+3σ)=0.997_4。
1.相互独立事件与互斥事件的区别
相互独立事件是指两个事件发生的概率互不影响,计算式为P(AB)=P(A)P(B),互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B)。
2.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次。
3.P(A·B)=P(A)·P(B)只有在事件A,B相互独立时,公式才成立,此时P(B)=P(B|A)。
一、走进教材
1.(选修2-3P55练习T3改编)天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3。假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为( )
A.0.2 B.0.3 C.0.38 D.0.56
解析 设甲地降雨为事件A,乙地降雨为事件B,则两地