2019-2020学年人教A版必修三 2.1.2 系统抽样 教案
2019-2020学年人教A版必修三   2.1.2 系统抽样  教案第2页

叫做系统抽样.

其步骤是:

1°采用随机抽样的方法将总体中的N个个体编号;

2°将整体按编号进行分段,确定分段间隔k(k∈N,l≤k);

3°在第1段用简单随机抽样确定起始个体的编号l(l∈N,l≤k);

4°按照一定的规则抽取样本.通常是将起始编号l加上间隔k得到第2个个体编号(l+k),再加上k得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.

说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.

(3)系统抽样的特点是:

1°当总体容量N较大时,采用系统抽样;

2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[].

3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.

应用示例

例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程.

解:适宜选用系统抽样,抽样过程如下:

(1)随机地将这1 000名学生编号为1,2 ,3,...,1000.

(2)将总体按编号顺序均分成50部分,每部分包括20个个体.

(3)在第一部分的个体编号1,2,3,...,20中,利用简单随机抽样抽取一个号码,比如18.

(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,...,978,998.

点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.

变式训练

1.下列抽样不是系统抽样的是( )

A.从标有1-15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样

B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验

C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止

D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈

分析:C中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.

答案:C

2.某校高中三年级的295名学生已经编号为1,2,...,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.

分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号.