2018-2019学年人教B版 必修2 2.3.2 圆的一般方程 学案
2018-2019学年人教B版 必修2  2.3.2 圆的一般方程 学案第2页

  (1)实数m的取值范围;

  (2)圆心坐标和半径.

  [解] (1)据题意知

  D2+E2-4F=(2m)2+(-2)2-4(m2+5m)>0,即4m2+4-4m2-20m>0,解得m<5(1),

  故m的取值范围为5(1).

  (2)将方程x2+y2+2mx-2y+m2+5m=0写成标准方程为(x+m)2+(y-1)2=1-5m,

  故圆心坐标为(-m,1),半径r=.

  [规律方法] 方程x2+y2+Dx+Ey+F=0表示圆的两种判断方法

  1配方法.对形如x2+y2+Dx+Ey+F=0的二元二次方程可以通过配方变形成"标准"形式后,观察是否表示圆.

  2运用圆的一般方程的判断方法求解.即通过判断D2+E2-4F是否为正,确定它是否表示圆.

  提醒:在利用D2+E2-4F>0来判断二元二次方程是否表示圆时,务必注意x2及y2的系数.

  [跟踪训练]

  1.方程x2+y2+ax+2ay+4(5)a2+a-1=0表示圆,则a的取值范围是( )

  A.a<1 B.a>1

  C.-2<a<3(2) D.-2<a<0

  A [当a2+4a2-4a2+a-1(5)>0时,表示圆的方程,

  化简得-a+1>0,解得a<1,选A.]

2.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标