由此猜想,
学生讨论:1)哥德巴赫猜想:任何大于2的偶数可以表示为两个素数的之和。
2)三根针上有若干个金属片的问题。
四、巩固练习:
1、已知,经计算: ,推测当时,有__________________________.
2、已知:,。
观察上述两等式的规律,请你写出一般性的命题,并证明之。
3、观察(1)
(2)。
由以上两式成立,推广到一般结论,写出你的推论。
注:归纳推理的几个特点:
1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.
2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.
3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.
归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.
五、 教学小结:
1.归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质。
2)从已知的相同性质中推出一个明确表述的一般命题(猜想)。
六、作业:
教后反思: