人教版九年级上册数学《全册教学设计教案、进度表》免费下载21
人教版九年级上册数学《全册教学设计教案、进度表》免费下载21第5页

一、复习引入

导语:已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.

二、探究新知

* 探究课本问题1

分析:

1.用列方程方法解题的等量关系是什么?

2.解方程的依据是什么?

3.方程的解是什么?问题的答案是什么?

4.该方程的结构是怎样的?

归纳:

  可根据数的开方的知识解形如 x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.

* 解决课本思考

1如何理解降次?

2本题中的一元二次方程是通过什么方法降次的?

3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?

归纳:

1运用平方根知识将形如 x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;

2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).

* 探究课本问题2

1.根据题意列方程并整理成一般形式.

2.将方程 x2+6x-16=0和x2+6x+9=2对比,怎样将方程 x2+6x-16=0化为像 x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?

 ○1完成填空: x2+6x+ =(x+ )2

 ○2方程移项之后,两边应加什么数,可将左边配成完全平方式?

* 归纳:

用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:

  先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.

三、课堂训练

课本练习:

四、小结归纳

1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.

2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.

3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.

五、作业设计

必做:P16:1、2、3(1)(2)

选做:下面补充作业

补充作业:

1.若8x2-16=0,则x的值是_________.

2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.

3.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).

A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2

4.方程3x2+9=0的根为( ).

A.3 B.-3 C.±3 D.无实数根

5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).

A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1

C.x2+8x+42=1 D.x2-4x+4=-11

6.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.

(1)鸡场的面积能达到180m2吗?能达到200m吗?

(2)鸡场的面积能达到210m2吗?

点题,板书课题.

学生读题找等量关系列方程,思考解方程的依据.

学生观察所列方程特点,辨析方程的解与问题的答案.

学生尝试描述何为降次及方法,把握方程结构特点,初步体会直接开平方法解一元二次方程.

教师组织学生讨论,尝试回答,教师及时肯定并总结

学生审读并列方程

组织学生讨论,交流

然后师生总结

学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正

师生归纳总结,学生作笔记.

开门见山明确本节课内容

淡化列方程难度,重点突出解方程方法,关注方程的 解,以及方程的解要受到实际问题的检验,作出取舍.

理解降次,初步感知方程结构特点,更好把握直接开平方法,并为配方法的学习作铺垫

感知一元二次方程的实际应用

在比较中发现配方法的实质

总结成文,为熟练运用作准备

使学生巩固提高

纳入知识系统 教 学 反 思