(2)求Y的分布列、期望及方差.
【精彩点拨】 (1)可先求出X分布列,然后利用期望和方差公式求解;(2)可由Y分布列及其期望、方差、公式求解,也可由期望、方差性质求解.
【自主解答】 (1)X的可能取值为0,1,2.
若X=0,表示没有取出次品,其概率为P(X=0)==,同理,有P(X=1)==,
P(X=2)==.
∴X的分布列为
X 0 1 2 P ∴E(X)=0×+1×+2×=,
D(X)=2×+2×+2×=++=.
(2)Y的可能取值为1,2,3,显然X+Y=3.
法一:P(Y=1)=P(X=2)=,
P(Y=2)=P(X=1)=,
P(Y=3)=P(X=0)=,
∴Y的分布列为
Y 1 2 3 P E(Y)=1×+2×+3×=,
D(Y)=2×+2×+2×=.
法二:E(Y)=E(3-X)=3-E(X)=,
D(Y)=D(3-X)=(-1)2D(X)=.
1.由本例可知,利用公式D(aX+b)=a2D(X)及E(aX+b)=aE(X)+b来求E(Y)及D(Y)