(2)若已知量或待求量中涉及重力加速度g,则应考虑黄金代换式gR2=GM(mg=G)的应用.
(3)若已知量或待求量中涉及v或ω或T,则应考虑从G=m=mω2r=mr中选择公式应用.
【例3】 地球的两颗人造卫星质量之比m1∶m2=1∶2,轨道半径之比r1∶r2=1∶2.求:
(1)线速度大小之比;
(2)角速度之比;
(3)运行周期之比;
(4)向心力大小之比.
答案 见解析
解析 设地球的质量为M,两颗人造卫星的线速度分别为v1、v2,角速度分别为ω1、ω2,运行周期分别为T1、T2,向心力分别为F1、F2.
(1)根据万有引力定律G=m
得v=,所以====
故二者线速度大小之比为∶1.
(2)根据圆周运动规律v=ωr得ω=
所以=·=,故二者角速度之比为2∶1.
(3)根据圆周运动规律T=,所以==
故二者运行周期之比为1∶2.
(4)根据万有引力充当向心力,有F=G,
所以=·=,故二者向心力大小之比为2∶1.
三、宇宙速度 同步卫星
1.宇宙速度的意义: