弹性碰撞模型及应用
弹性碰撞问题及其变形在是中学物理中常见问题,在高中物理中占有重要位置,也是多年来高考的热点。弹性碰撞模型能与很多知识点综合,联系广泛,题目背景易推陈出新,掌握这一模型,举一反三,可轻松解决这一类题,切实提高学生推理能力和分析解决问题能力。所以我们有必要研究这一模型。
(一) 弹性碰撞模型
弹性碰撞是碰撞过程无机械能损失的碰撞,遵循的规律是动量守恒和系统机械能守恒。确切的说是碰撞前后动量守恒,动能不变。在题目中常见的弹性球、光滑的钢球及分子、原子等微观粒子的碰撞都是弹性碰撞。
已知A、B两个钢性小球质量分别是m1、m2,小球B静止在光滑水平面上,A以初速度v0与小球B发生弹性碰撞,求碰撞后小球A的速度v1,物体B的速度v2大小和方向
解析:取小球A初速度v0的方向为正方向,因发生的是弹性碰撞,碰撞前后动量守恒、动能不变有:
m1v0= m1v1+ m2v2 ①
②
由①②两式得: ,
结论:(1)当m1=m2时,v1=0,v2=v0,显然碰撞后A静止,B以A的初速度运动,两球速度交换,并且A的动能完全传递给B,因此m1=m2也是动能传递最大的条件;
(2)当m1>m2时,v1>0,即A、B同方向运动,因 <,所以速度大小v1<v2,即两球不会发生第二次碰撞;
若m1>>m2时,v1= v0,v2=2v0 即当质量很大的物体A碰撞质量很小的物体B时,物体A的速度几乎不变,物体B以2倍于物体A的速度向前运动。
(3)当m1<m2时,则v1<0,即物体A反向运动。