一般地,
若p==>q ,但q p,则称p是q的充分但不必要条件;
若pq,但q ==> p,则称p是q的必要但不充分条件;
若pq,且q p,则称p是q的既不充分也不必要条件.
在讨论p是q的什么条件时,就是指以下四种之一:
①若p==>q ,但q p,则p是q的充分但不必要条件;
②若q==>p,但p q,则p是q的必要但不充分条件;
③若p==>q,且q==>p,则p是q的充要条件;
④若p q,且q p,则p是q的既不充分也不必要条件.
5.练习巩固:P14 练习第 1、2题
说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.
6.例题分析
例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.
分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(p==>q)和必要性(q==>p)即可.
证明过程略.
例3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立.s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?
7.课堂总结:
充要条件的判定方法
如果"若p,则q"与" 若p则q"都是真命题,那么p就是q的充要条件,否则不是.
8.作业:P14:习题1.2A组第1(3)(2),2(3),3题
课后反思: