所以Δ<0,即16(m-2)2-16<0,
所以16(m2-4m+3)<0,所以1<m<3.
因为p或q为真,p且q为假,
所以p为真,q为假或者p为假,q为真.
即或
解得m≥3或1<m≤2.
所以m的取值范围为{m|m≥3或1<m≤2}.
引申探究
本例中若将"p且q为假"改为"p且q为真",求实数m的取值范围.
解 同例得当p为真命题时,m>2,当q为真命题时,
1<m<3.
因为p或q为真,p且q为真,所以p,q均为真命题,
即解得2<m<3,所以m的取值范围为(2,3).
反思与感悟 应用逻辑联结词求参数范围的四个步骤
(1)分别求出命题p,q为真时对应的参数集合A,B;
(2)讨论p,q的真假;
(3)由p,q的真假转化为相应的集合的运算;
(4)求解不等式或不等式组得到参数的取值范围.
跟踪训练4 已知p:(x+2)(x-3)≤0,q:|x+1|≥2,若"p且q"为真,则实数x的取值范围是________.
考点 "p且q"形式命题真假性的判断
题点 由"p且q"形式命题的真假求参数的取值范围
答案 [1,3]
解析 由(x+2)(x-3)≤0,解得-2≤x≤3.
由|x+1|≥2,解得x≥1或x≤-3.
∵"p且q"为真,∴
解得1≤x≤3,则实数x的取值范围是[1,3].