将其代入椭圆方程并整理,
得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0.
设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两根,
于是x1+x2=.
又M为线段AB的中点,
∴==2,解得k=-.
故所求直线的方程为x+2y-4=0.
方法二 点差法
设A(x1,y1),B(x2,y2),x1≠x2.
∵M(2,1)为线段AB的中点,
∴x1+x2=4,y1+y2=2.
又A,B两点在椭圆上,
则x+4y=16,x+4y=16,
两式相减,得(x-x)+4(y-y)=0,
于是(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0.
∴=-=-=-,
即kAB=-.
故所求直线的方程为x+2y-4=0.
方法三 对称点法(或共线法)
设所求直线与椭圆的一个交点为A(x,y),
由于点M(2,1)为线段AB的中点,
则另一个交点为B(4-x,2-y).
∵A,B两点都在椭圆上,