即
=
而。
对于一般函数,设,是否也有
若上式成立,我们就找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。
注:1:定理 如果函数是上的连续函数的任意一个原函数,则
证明:因为=与都是的原函数,故-=C()
其中C为某一常数。
令得-=C,且==0
即有C=,故=+
=-=
令,有
此处并不要求学生理解证明的过程
为了方便起见,还常用表示,即