根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
例2:下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4; (2)3x+2y=5xy; (3)7x2-3x2=4; (4)9a2b-9ba2=0。
(通过这一组题的训练,进一步熟悉法则。)
例3:合并下列多项式中的同类项:
①2a2b-3a2b+0.5a2b; ②a3-a2b+ab2+a2b-ab2+b3;③5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4。
(用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数。)
解:①。
②。
③原式=5(x+y)3-2(x-y)4-2(x+y)3+(x-y)4=3(x+y)3-(x-y)4。
例4:求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。
解:,当x=-3时,原式=。
试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?
(两种方法。通过比较两种方法,使学生认识到,在求多项式的值时,常常先合并同类项,再求值,这样比较简便。)
6.课堂练习:课本p66:1,2,3。
三、课堂小结:
①要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误。
②从实际问题中类比概括得出合并同类项法则,并能运用法则,正确的合并同类项。
四、课堂作业: 课本p71:1
板书设计:
教学后记: