利用导数求函数的极值 [典例] 求函数f(x)=x2e-x的极值.
[解] 函数的定义域为R,
f′(x)=2xe-x+x2·e-x·(-x)′
=2xe-x-x2·e-x
=x(2-x)e-x.
令f′(x)=0,得x(2-x)·e-x=0,
解得x=0或x=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0 (0,2) 2 (2,+∞) f′(x) - 0 + 0 - f(x) 0 4e-2
因此当x=0时,f(x)有极小值,并且极小值为f(0)=0;
当x=2时,f(x)有极大值,并且极大值为f(2)=4e-2=.
求函数极值的步骤
(1)确定函数的定义域;
(2)求方程f′(x)=0的根;
(3)用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并列成表格;
(4)由f′(x)在方程f′(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况.
[活学活用]
求下列函数的极值点和极值.
(1)f(x)=x3-x2-3x+3;
(2)f(x)=+3ln x.
解:(1)f′(x)=x2-2x-3.
令f′(x)=0,得x=3或x=-1.