3. 复数的加法运算满足交换律: z1+z2=z2+z1.
证明:设z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R).
∵z1+z2=(a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i.
z2+z1=(a2+b2i)+(a1+b1i)=(a2+a1)+(b2+b1)i.
又∵a1+a2=a2+a1,b1+b2=b2+b1.
∴z1+z2=z2+z1.即复数的加法运算满足交换律.
4. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)
证明:设z1=a1+b1i.z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵(z1+z2)+z3=[(a1+b1i)+(a2+b2i)]+(a3+b3i)
=[(a1+a2)+(b1+b2)i]+(a3+b3)i
=[(a1+a2)+a3]+[(b1+b2)+b3]i
=(a1+a2+a3)+(b1+b2+b3)i.
z1+(z2+z3)=(a1+b1i)+[(a2+b2i)+(a3+b3i)]
=(a1+b1i)+[(a2+a3)+(b2+b3)i]
=[a1+(a2+a3)]+[b1+(b2+b3)]i
=(a1+a2+a3)+(b1+b2+b3)i
∵(a1+a2)+a3=a1+(a2+a3),(b1+b2)+b3=b1+(b2+b3).
∴(z1+z2)+z3=z1+(z2+z3).即复数的加法运算满足结合律
讲解范例:
例1计算:(5-6i)+(-2-i)-(3+4i)
【解析】:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4) i=-11 i
例2计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+...+(-2002+2003i)+(2003-2004i)
【解析】解法一:原式=(1-2+3-4+...-2002+2003)+(-2+3-4+5+...+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.
解法二:∵(1-2i)+(-2+3i)=-1+i,
(3-4i)+(-4+5i)=-1+i,
......
(2001-2002i)+(-2002+2003)i=-1+i.
相加得(共有1001个式子):
原式=1001(-1+i)+(2003-2004i)