题型一 利用半角公式求值
【例1】 已知cos α=,α为第四象限角,求sin ,cos ,tan .
解 sin =± =± =±,
cos =± =± =±,
tan =± =±=±.
∵α为第四象限角,∴为第二、四象限角.
当为第二象限角时,
sin=,cos=-,tan=-;
当为第四象限角时,
sin=-,cos=,tan=-.
规律方法 利用半角公式求值的思路
(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.
(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.
(3)选公式:涉及半角公式的正切值时,常用tan==,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2=,cos2=计算.
(4)下结论:结合(2)求值.