1813=333×5+148
333=148×2+37
148=37×4+0
则37为8251与6105的最大公约数.
以上我们求最大公约数的方法就是辗转相除法.也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的.利用辗转相除法求最大公约数的步骤如下:
第一步:用较大的数除以较小的数得到一个商和一个余数;
第二步:若,则为的最大公约数;若,则用除数除以余数得到一个商和一个余数;
第三步:若,则为的最大公约数;若,则用除数除以余数得到一个商和一个余数;
依次计算直至,此时所得到的即为所求的最大公约数.
练习:利用辗转相除法求两数4081与20723的最大公约数
解:
2.更相减损术
我国早期也有解决求最大公约数问题的算法,就是更相减损术.
更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母之数,以少减多,更相减损,求其等也,以等数约之.