知识与技能目标
使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.
要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.
过程与方法目标
情感,态度与价值观目标
(1)培养学生用对称的美学思维来体现数学的和谐美。
(2)培养学生观察,实验,探究与交流的数学活动能力。
能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;
(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力
(1) 复习与引入过程
回忆平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?
2.简单实验
如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.
(2) 新课讲授过程
(i)由上面的探究过程得出抛物线的定义
《板书》平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.
(ii) 抛物线标准方程的推导过程