2018-2019学年人教A版 选修1-1 3.1.1变化率问题 教案
2018-2019学年人教A版 选修1-1 3.1.1变化率问题 教案第2页

分析: ,

⑴ 当V从0增加到1时,气球半径增加了

   气球的平均膨胀率为

⑵ 当V从1增加到2时,气球半径增加了

   气球的平均膨胀率为

可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.

思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

问题2 高台跳水问题:

在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在怎样的函数关系?

在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.

)如何计算运动员的平均速度?并分别计算0≤t≤0.5,1≤t≤2,1.8≤t≤2,2≤t≤2.2,时间段里的平均速度.

思考计算:和的平均速度

在这段时间里,;

在这段时间里,

探究:计算运动员在这段时间里的平均速度,并思考以下问题:

⑴运动员在这段时间内使静止的吗?

⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,