所以OD和BE平行.
又因为O是AE的中点,
所以D是AB的中点.
2.已知AD是△ABC的高,AE是△ABC的外接圆的直径.
求证:∠BAE=∠DAC.
证明:连接BE,
因为AE为直径,
所以∠ABE=90°.
因为AD是△ABC的高,
所以∠ADC=90°.
所以∠ADC=∠ABE.
因为∠E=∠C,
所以∠BAE=90°-∠E,
∠DAC=90°-∠C.
所以∠BAE=∠DAC.
3.已知⊙O中,AB=AC,D是BC延长线上一点,AD交⊙O于E.
求证:AB2=AD·AE.
证明:如图,
∵AB=AC,∴=.
∴∠ABD=∠AEB.
在△ABE与△ADB中,
∠BAE=∠DAB,
∠AEB=∠ABD,
∴△ABE∽△ADB.
∴=,即AB2=AD·AE.
利用圆周角进行计算