平面和平面平行的性质
1.思考:(1)两个平面平行,那么其中一个平面内的直线与另一个面具有什么关系?
(2)两个平面平行,其中一个平面内的直线与另一个平面内的直线具有什么关系?
(2)两个平面平行,其中一个平面内的直线与另一平面内的直线在什么条件下不平行?
2.例1 如图,已知平面,,满足,,,证:a∥b.
证明:因为,
,
所以,.
又因为,
所以a、b没有公共点,
又因为a、b同在平面内,
所以a∥b.
3.定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
上述定理告诉我们,可以由平面与平面平行得出直线与直线平行. 例2 夹在两个平行平面间的平行线段相等,如图∥,AB∥CD,且A∈,C∈,B∈,D∈,求证:AB = CD.
证明:如图,AB∥CD,AB、CD确定一个平面
,
例3如图,已知平面,AB、CD是异面直线,且AB分别交于A、B两点,CD分别交于C、D两点.M、N分别在AB、CD上,且.
求证:MN∥
证明:如图,过点A作AD′∥CD,交于D′,再在平面AB D′内作ME∥B D′,交AD′于E.则,
又
∴.
连结EN、AC、D′D,平行线AD′与CD确定的平面与、的交线分别是AC、D′D.
∵,∴AC∥D′D
又
∴EN∥AC∥D′D
∵,
∴EN∥,又MN∥.
∴平面MEN∥
∴MN∥.