2019-2020学年人教A版选修1-1 1.3.1且 教案
2019-2020学年人教A版选修1-1     1.3.1且     教案第3页

1.3简单的逻辑联结词

1.3.1且

(一)教学目标

1.知识与技能目标:

(1) 掌握逻辑联结词"且"的含义

(2) 正确应用逻辑联结词"且"解决问题

(3) 掌握真值表并会应用真值表解决问题

2.过程与方法目标:

在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

3.情感态度价值观目标:

激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.

(二)教学重点与难点

重点:通过数学实例,了解逻辑联结词"且"的含义,使学生能正确地表述相关数学内容。

难点:1、正确理解命题"P∧q"真假的规定和判定.2、简洁、准确地表述命题"P∧q".

教具准备:与教材内容相关的资料。

教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

(三)教学过程

学生探究过程:

1、引入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  在数学中,有时会使用一些联结词,如"且""或""非"。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词"且""或""非"联结命题时的含义和用法。

为叙述简便,今后常用小写字母p,q,r,s,...表示命题。(注意与上节学习命题的条件p与结论q的区别)

2、思考、分析

问题1:下列各组命题中,三个命题间有什么关系?

  ①12能被3整除;

  ②12能被4整除;

  ③12能被3整除且能被4整除。

学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词"且"联结得到的新命题。

问题2:以前我们有没有学习过象这样用联结词"且"联结的命题呢?你能否举一些例子?

例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

3、归纳定义

  一般地,用联结词"且"把命题p和命题q联结起来,就得到一个新命题,记作

p∧q

读作"p且q"。

  命题"p∧q"即命题"p且q"中的"且"字与下面命题中的"且" 字的含义相同吗?

若 x∈A且x∈B,则x∈A∩B。