2017-2018学年人教A版选修2-3 2.2二项分布用其应用 教案
2017-2018学年人教A版选修2-3     2.2二项分布用其应用       教案第2页

  因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y和Y.而"最后一名同学抽到中奖奖券"包含的基本事件仍是Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为,不妨记为P(B|A ) ,其中A表示事件"第一名同学没有抽到中奖奖券".

  已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?

  在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) .

思考活动:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?

  用表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即={Y, Y,Y}.既然已知事件A必然发生,那么只需在A={Y, Y}的范围内考虑问题,即只有两个基本事件Y和Y.在事件 A 发生的情况下事件B发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y,因此

  ==.

其中n ( A)和 n ( AB)分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,

  

其中 n()表示中包含的基本事件个数.所以,

  =.

因此,可以通过事件A和事件AB的概率 表示P(B| A )

二、讲解新课:

1、定义

设A和B为两个事件,P(A)>0,那么,在"A已发生"的条件下,B发生的条件概率(conditional probability ). 读作A 发生的条件下 B 发生的概率.[