在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.
(2)函数的极值与导数.
①极大值:在点x=a附近,满足f(a)>f(x),当x0,当x>a时,f′(x)<0,则点a叫做函数的极大值点,f(a)叫做函数的极大值;
②极小值:在点x=a附近,满足f(a)
6.求函数y=f(x)在[a,b]上的最大值与最小值的步骤
(1)求函数y=f(x)在(a,b)内的极值.
(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个为最小值.
[体系构建]
[题型探究]
导数的几何意义 已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,直线m:y=kx+9,且f′(-1)=0.
(1)求a的值;
(2)是否存在实数k,使直线m既是曲线y=f(x)的切线,又是y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.
[思路探究] (1)→→