解得
∴x=,y=4.
[一点通] 复数相等问题的解题技巧
(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.
(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化的体现.
1.若5-12i=xi+y(x,y∈R),则x=______,y=________.
答案:-12 5
2.已知复数z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=________,n=________.
解析:根据两个复数相等的充要条件得
解得:或
答案:2 ±2
3.已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.
解:∵M∪P=P,∴M⊆P,
即(m2-2m)+(m2+m-2)i=-1
或(m2-2m)+(m2+m-2)i=4i.
由(m2-2m)+(m2+m-2)i=-1,
得解得m=1;
由(m2-2m)+(m2+m-2)i=4i,