其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.
2. 小结:(1)、用回归方程探究非线性回归问题的方法、步骤.
(2)、化归思想(转化思想)在实际问题中,有时两个变量之间的关系并不是线性关系,这就需要我们根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数.下面列举出一些常见的曲线方程,并给出相应的化为线性回归方程的换元公式.
(1),令,,则有.
(2),令,,,则有.
(3),令,,,则有.
(4),令,,,则有.
(5),令,,则有.
(三)、巩固练习:
为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:
天数x/天 1 2 3 4 5 6 繁殖个数y/个 6 12 25 49 95 190 (1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
(2)试求出预报变量对解释变量的回归方程。