(1)建立直角坐标系,设曲线上任一点P坐标为(x,y);
(2)选取适当的参数;
(3)根据已知条件和图形的几何性质,物理意义,建立点P坐标与参数的函数式;
(4)证明这个参数方程就是所要求的曲线的方程.
过点P(-2,0)作直线l与圆x2+y2=1交于A、B两点,设A、B的中点为M,求M的轨迹的参数方程.
[解] 设M(x,y),A(x1,y1),B(x2,y2),直线l的方程为x=ty-2.
由消去x得(1+t2)y2-4ty+3=0.
∴y1+y2=,则y=.
x=ty-2=-2=,
由Δ=(4t)2-12(1+t2)>0得t2>3.