B.乙盒中红球与丙盒中黑球一样多
C.乙盒中红球不多于丙盒中红球
D.乙盒中黑球与丙盒中红球一样多
答案 B
2.(2018山东,11,5分)观察下列各式:
=40;
+=41;
++=42;
+++=43;
......
照此规律,当n∈N*时,
+++...+= .
答案 4n-1
3.(2018北京,14,5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是 ;
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是 .
答案 ①Q1 ②p2
4.(2018课标全国Ⅱ,15,5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:"我与乙的卡片上相同的数字不是2."乙看了丙的卡片后说:"我与丙的卡片上相同的数字不是1."丙说:"我的卡片上的数字之和不是5."则甲的卡片上的数字是 .
答案 1和3
5.(2018课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市.
由此可判断乙去过的城市为 .
答案 A
教师用书专用(6-10)
6.(2018北京,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为"优秀""合格""不合格".若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称"学生甲比学生乙成绩好".如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )
A.2人 B.3人
C.4人 D.5人
答案 B
7.(2018福建,15,4分)一个二元码是由0和1组成的数字串x1x2...xn(n∈N*),其中xk(k=1,2,...,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x1x2...x7的码元满足如下校验方程组:
其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于 .
答案 5
8.(2018陕西,14,5分)观察分析下表中的数据:
多面体 面数(F) 顶点数(V) 棱数(E)