要求:表示直线l的线段必须有部分在表示平面α的平行四边形之外,这样既能与表示直线在平面内区分开来,又具有较强的立体感.
(3)画直线l与平面α平行:如图c所示.
要求:最直观的画法是表示直线l的线段在表示平面α的平行四边形之外,且与此平行四边形的一边平行.
讲一讲
1.下列说法:
①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.
其中说法正确的个数为( )
A.0个 B.1个 C.2个 D.3个
[尝试解答] 对于①,直线a在平面α外包括两种情况:a∥α或a与α相交,∴a和α不一定平行,∴①说法错误.
对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α,∴②说法错误.
对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行,∴③说法正确.
[答案] B
直线与平面位置关系的判断
(1)空间直线与平面位置关系的分类是解决问题的突破口,这类判断问题,常用分类讨论的方法解决.另外,借助模型(如正方体、长方体等)也是解决这类问题的有效方法.
(2)要证明直线在平面内,只要证明直线上两点在平面α内,要证明直线与平面相交,只需说明直线与平面只有一个公共点,要证明直线与平面平行,则必须说明直线与平面没