根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统 ( )
A.动量守恒,机械能守恒
B.动量守恒,机械能不守恒
C.动量不守恒,机械能守恒
D.无法判定动量、机械能是否守恒
B [在子弹打击木块A及弹簧压缩的过程中,对子弹、两木块和弹簧组成的系统,系统所受的外力之和为零,则系统的动量守恒.在此过程中,有摩擦力做功,所以系统机械能不守恒.故B正确,A、C、D错误.]
3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定水平向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s.则( )
A.左方是A球,碰撞后A、B两球速度大小之比为2∶5
B.左方是A球,碰撞后A、B两球速度大小之比为1∶10
C.右方是A球,碰撞后A、B两球速度大小之比为2∶5
D.右方是A球,碰撞后A、B两球速度大小之比为1∶10
A [由两球的动量都是6 kg·m/s可知,运动方向都水平向右,且能够相碰,说明左方是质量小、速度大的小球,故左方是A球.碰后A球的动量减少了4 kg·m/s,即A球的动量为2 kg·m/s,由动量守恒定律得B球的动量为10 kg·m/s,又因mB=2mA,可得其速度比为2∶5,故选项A是正确的.]
动量守恒定律的特性 1.对"守恒"的理解
(1)动量守恒定律的研究对象是相互作用的物体构成的系统.
(2)系统"总动量保持不变",不仅是系统的初末两时刻的总动量(系统内各物体动量的矢量和)相等,而且系统在整个过程中任意两时刻的总动量都相等