(2)你能总结出柱、锥、台体的关系吗?
提示:
1.对简单多面体的理解
如图所示为长方体ABCDA′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.
思路分析:①本题是一个几何体的分割问题;
②分割后是两个几何体.
解题时可先确定两个互相平行的面,然后根据棱柱的定义得出结论.
解:截面BCFE上方部分是棱柱BB′ECC′F,其中平面BB′E和平面CC′F是其底面,BC,B′C′,EF是其侧棱.
截面BCFE下方部分是棱柱ABEA′DCFD′,其中平面ABEA′和DCFD′是其底面,AD,BC,EF,A′D′是其侧棱.
给出下列几个结论:
①长方体一定是正四棱柱;
②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;
③多面体至少有四个面;
④棱台的侧棱所在直线均相交于同一点.
其中,错误的个数是( ).
A.0 B.1 C.2 D.3
思路分析:解答本题的依据是棱柱、棱锥、棱台的结构特征,结合已知进行具体分析.
解析:对于①,长方体的底面不一定是正方形,故①错;②显然是正确的;对于③,一个图形要成为空间几何体,至少需有四个顶点,当有四个顶点时,易知它可围成四个面,因而一个多面体至少应有四个面,而且这样的面必是三角形,故③是正确的;对于④,棱台的侧棱所在的直线就是所截棱锥的侧棱所在的直线,而棱锥的侧棱都有一个公共的点,即棱锥的顶点,于是棱台的侧棱所在直线均相交于同一点,故④是正确的.
答案:B
1.下列命题中,正确的是( ).