(问题4)研究F与r、q的定量关系应该采用什么方法?
控制变量法--(1)保持q不变,验证F与r2的反比关系;
(2)保持r不变,验证F与q的正比关系。
<实验可行性讨论>.
困难一:F的测量(在这里F是一个很小的力,不能用弹簧测力计直接测量,你有什么办法可以实现对F大小的间接测量吗?)
困难二:q的测量(我们现在并不知道准确测定带电小球所带的电量的方法,要研究F与q的定量关系,你有什么好的想法吗?)
(思维启发)有这样一个事实:两个相同的金属小球,一个带电、一个不带电,互相接触后,它们对相隔同样距离的第三个带电小球的作用力相等。
--这说明了什么?(说明球接触后等分了电荷)
(追问)现在,你有什么想法了吗?
<实验具体操作>定量验证
实验结论:两个点电荷间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。
<得出库仑定律>同学们,我们一起用了大约20分钟得到的这个结论,其实在物理学发展史上,数位伟大的科学家用了近30年的时间得到的并以法国物理学家库仑的名字来命名的库仑定律。
启示一:类比猜想的价值
读过牛顿著作的人都可能推想到:凡是表现这种特性的相互作用都应服从平方反比定律。这似乎用类比推理的方法就可以得到电荷间作用力的规律。正是这样的类比,让电磁学少走了许多弯路,形成了严密的定量规律。马克·吐温曾说"科学真是迷人,根据零星的事实,增添一点猜想,竟能赢得那么多的收获!"。科学家以广博的知识和深刻的洞察力为基础进行的猜想,才是最具有创造力的思维活动。
然而,英国物理史学家丹皮尔也说"自然如不能被目证那就不能被征服!"
启示二:实验的精妙
1785年库仑在前人工作的基础上,用自己设计的扭称精确验证得到了库仑定律。(库仑扭称实验的介绍:这个实验的设计相当巧妙。把微小力放大为力矩,将直接测量转换为间接测量,从而得到静电力的作用规律--库仑定律。)
<讲解库仑定律>
1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
2.数学表达式:
(说明),叫做静电力常量。
3.适用条件:(1)真空中(一般情况下,在空气中也近似适用);
(2)静止的;(3)点电荷。
(强调)库仑定律的公式与万有引力的公式在形式上尽管很相似,但仍是性质不同的两种力。我们来看下面的题目:
<达标训练>
例1、(公式的简单变化)两个放在绝缘上的相同金属球A、B,相距d,球的半径比d小得多,分别带有电荷3q和q,A球受到的库仑引力大小为。则(1)B球受到的库仑引力为__。(2)若保持球A、B的电荷量不变,电荷间的距离增大为原来的2倍,电荷间的作用力为____。(3)若保持球A、B间距离不变,电荷量都增大为原来的2倍,电荷间的作用力为___。(4)现将这两个金属球接触,然后仍放回原处,则电荷间的作用力将变为___(