3.以x=1为准线的抛物线的标准方程为( D )
A.y2=2x B.y2=-2x
C.y2=4x D.y2=-4x
解析:由准线x=1知,抛物线方程为:y2=-2px(p>0)且=1,p=2,∴抛物线的方程为y2=-4x.
4.(选修2-1P72练习第1(1)题改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为y2=-8x或x2=-y.
解析:很明显点P在第三象限,所以抛物线的焦点可能在x轴负半轴上或y轴负半轴上.
当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点P(-2,-4)的坐标代入得(-4)2=-2p×(-2),解得p=4,此时抛物线的标准方程为y2=-8x;
当焦点在y轴负半轴上时,设方程为x2=-2py(p>0),把点P(-2,-4)的坐标代入得(-2)2=-2p×(-4),解得p=,此时抛物线的标准方程为x2=-y.
综上可知,抛物线的标准方程为y2=-8x或x2=-y.