知识点三 离散型随机变量
1.定义:所有取值可以一一列出的随机变量称为离散型随机变量.
2.特征:
(1)可用数字表示.
(2)试验之前可以判断其出现的所有值.
(3)在试验之前不能确定取何值.
(4)试验结果能一一列出.
1.离散型随机变量的取值是任意的实数.( × )
2.随机变量的取值可以是有限个,也可以是无限个.( √ )
3.离散型随机变量是指某一区间内的任意值.( × )
类型一 随机变量的概念
例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.
(1)某机场一年中每天运送乘客的数量;
(2)某单位办公室一天中接到电话的次数;
(3)明年5月1日到10月1日期间所查酒驾的人数;
(4)明年某天济南-青岛的某次列车到达青岛站的时间.
考点 随机变量及离散型随机变量的概念
题点 随机变量的概念
解 (1)某机场一年中每天运送乘客的数量可能为0,1,2,3,...,是随机变化的,因此是随机变量.
(2)某单位办公室一天中接到电话的次数可能为0,1,2,3,...,是随机变化的,因此是随机变量.
(3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,...,是随机变化的,因此是随机变量.
(4)济南-青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,也可能晚点,故是随机变量.
反思与感悟 随机变量的辨析方法
(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.
(2)随机试验的结果的不确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.