学们可以在小组内交流自己的看法.
Ⅱ.导入新课
探索等腰三角形成等边三角形的条件.
[生]如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.
[师]你能给大家陈述一下理由吗?
[生]根据三角形的内角和定理,顶角是60°,等腰三角形的两个底角的和就是180°-60°=120°,再根据等腰三角形两个底角是相等的,所以每个底角分别是120°÷2=60°,则三个内角分别相等,根据等角对等边,则此时等腰三角形的三条边是相等的,即顶角为60°的等腰三角形为等边三角形.
[生]等腰三角形的底角是60°,那么这个三角形也是等边三角形,同样根据三角形内角和定理和等角对等边、等边对等角的性质.
[师]从同学们自主探索和讨论的结果可以发现:在等腰三角形中,不论底角是60°,还是顶角是60°,那么这个等腰三角形都是等边三角形.你能用更简洁的语言描述这个结论吗?
[生]有一个角是60°的等腰三角形是等边三角形.
(这个结论的证明对学生来说可能有一定的难点,难点是意识到分别讨论60°的角是底角和顶角两种情况.这是一种分类讨论的思想,教师要关注学生得出证明思路的过程,引导学生全面、周到地思考问题,并有意识地向学生渗透分类的思想方法)
[师]你在与同伴的交流过程中,发现了什么或受到了何种启示?
[生]我发现我的证明过程没有意识到"有一个角是60°",在等腰三角形中有两种情况:(1)这个角是底角;(2)这个角是顶角.也就是说我们思考问题要全面、周到.
[师]我们来看有多少同学意识到分别讨论60°的角是底角和顶角的情况,我们鼓掌表示对他们的鼓励.
今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?
[生]三个角都相等的三角形是等边三角形.
[师]下面就请同学们来证明这个结论.
已知:如图,在△ABC中,∠A=∠B=∠C.
求证:△ABC是等边三角形.
证明:∵∠A=∠B, ∴BC=AC(等角对等边).
又∵∠A=∠C, ∴BC=AC(等角对等边). ∴AB=BC=AC,即△ABC是等边三角形.
[师]这样,我们由等腰三角形的性质和判定方法就可以得到.
等边三角形的三个内角都相等,并且每一个角都等于60°;
三个角都相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.
[师]有了上述结论,我们来学习下面的例题,体会上述定理.
例4(书P54)
[例5]如图,课外兴趣小组在一次测量活动中,测得∠APB=60°,AP=BP=200m,他们便得出一个结论:A、B之间距离不少于200m,他们的结论对吗?
分析:我们从该问题中抽象出△APB,由已知条件∠APB=60°且AP=BP,由本节课探究结论知△APB为等边三角形.
解:在△APB中,AP=BP,∠APB=60°,