解 由方程组
消去y得k2x2+(2k2-4)x+k2=0,
Δ=(2k2-4)2-4k4=16(1-k2).
(1)若直线与抛物线有两个交点,
则k2≠0且Δ>0,
即k2≠0且16(1-k2)>0,
解得k∈(-1,0)∪(0,1).
所以当k∈(-1,0)∪(0,1)时,
直线l和抛物线C有两个交点.
(2)若直线与抛物线有一个交点,
则k2=0或当k2≠0时,Δ=0,
解得k=0或k=±1.
所以当k=0或k=±1时,直线l和抛物线C有一个交点.
(3)若直线与抛物线无交点,
则k2≠0且Δ<0.
解得k>1或k<-1.
所以当k>1或k<-1时,
直线l和抛物线C无交点.
反思与感悟 直线与抛物线交点的个数,等价于直线方程与抛物线方程联立得到的方程组解的个数.注意直线斜率不存在和得到的方程二次项系数为0的情况.
跟踪训练1 设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l斜率的取值范围是( )
A. B.[-2,2]
C.[-1,1] D.[-4,4]
考点 直线与抛物线的位置关系
题点 直线与抛物线公共点的个数
答案 C
解析 准线方程为x=-2,Q(-2,0).
设l:y=k(x+2),
由
得k2x2+4(k2-2)x+4k2=0.