≥2=2
=2≥(1+9)2=.
等号成立的条件均为a=b=c=,
∴原结论成立.
类型二 利用排序不等式证明不等式
例2 设A,B,C表示△ABC的三个内角弧度数,a,b,c表示其对边,求证:≥.
证明 不妨设a≤b≤c,于是A≤B≤C.
由排序不等式,得
aA+bB+cC=aA+bB+cC,
aA+bB+cC≥bA+cB+aC,
aA+bB+cC≥cA+aB+bC.
三式相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)
=π(a+b+c),得≥.
引申探究
若本例条件不变,求证:<.
证明 不妨设a≤b≤c,于是A≤B≤C.
由0<b+c-a,0<a+b-c,0<a+c-b,
有0<A(b+c-a)+C(a+b-c)+B(a+c-b)
=a(B+C-A)+b(A+C-B)+c(A+B-C)
=a(π-2A)+b(π-2B)+c(π-2C)
=(a+b+c)π-2(aA+bB+cC).
得<.
反思与感悟 利用排序不等式证明不等式的策略
(1)在利用排序不等式证明不等式时,首先考虑构造出两个合适的有序数组,并能根据需要