所以Δy=f(x1+Δx)-f(x1)
=2(x1+Δx)2+3(x1+Δx)-5-(2x+3x1-5)
=2[(Δx)2+2x1Δx]+3Δx
=2(Δx)2+(4x1+3)Δx.
==2Δx+4x1+3.
①当x1=4,x2=5时,Δx=1,
Δy=2(Δx)2+(4x1+3)Δx=2+19=21,=21.
②当x1=4,x2=4.1时,Δx=0.1,
Δy=2(Δx)2+(4x1+3)Δx=0.02+1.9=1.92.
=2Δx+4x1+3=19.2.
(2)在x=1附近的平均变化率为
k1==
=2+Δx;
在x=2附近的平均变化率为
k2==
=4+Δx;
在x=3附近的平均变化率为
k3==
=6+Δx.
当Δx=时,k1=2+=,
k2=4+=,k3=6+=.
由于k1 反思与感悟 求平均变化率的主要步骤