点评:已知一次函数的解析式,可利用换元法解决此题。
例题3 已知f(x)是一次函数,f [f(x) =4x-3,求f(x)的解析式。
思路导航:设f(x)= x+b,( ≠0)
f [f(x) =f( x+b)=x+ b+b=4x-3
=4, b+b=-3,
解得: =±2,b=-1或b=3。
答案:f(x)=2x-1或f(x)=-2x+3。
点评:先设解析式,利用换元法表示出一次函数解析式,再根据对应相等原则求解。
【总结提升】
1. 待定系数法解题的基本步骤:
(1)设出含有待定系数的解析式;
(2)根据恒等的条件,列出含待定系数的方程或方程组;
(3)解方程或方程组或者消去待定系数,从而使问题得到解决。
2. 待定系数法的应用很广泛,如因式分解、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等。
待定系数法
1. 已知函数f(x-1)=x2-3,则f(2)的值为( )
A. -2 B. 6
C. 1 D. 0
2. 一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:
每间房定价 100元 90元 80元 60元 住房率 65 75 85 95 要使每天的收入最高,每间房的定价应为( )
A. 100元 B. 90元
C. 80元 D. 60元
3. 已知函数的关系由下表给出: