1.定积分的概念 一般地,设函数在区间上连续,用分点
将区间等分成个小区间,每个小区间长度为(),在每个小区间上取一点,作和式:
如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:
其中成为被积函数,叫做积分变量,为积分区间,积分上限,积分下限。
说明:(1)定积分是一个常数,即无限趋近的常数(时)称为,而不是.
(2)用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限:
(3)曲边图形面积:;变速运动路程;
变力做功