2、对于函数单调性的判定,强调:(1)判别法的依据是导数的几何意义;(2)在(a,b)内f′(x)>0(f′(x)<0)是使f(x)在(a,b)内递增或递减的充分条件而非必要条件,例f(x)=x3在(-∞,+∞)内递增,并不要求在(-∞,+∞)内f′(x)>0.
3、关于极值问题,仍然要注意以下问题:(1)极值点未必可导点;(2)f′(x0)=0时,f(x0)未必是极值;(3)极大值未必大于极小值.
4.关于函数的最值:切实掌握求最值的步骤和方法外,应说明极值和最值的关系,以及f(x)在[a,b]内连续是使f(x)在[a,b]内有最大值和最小值的充分条件而非必要条件.
(三)、例题探析
例1、求函数y=x4-2x2+5在闭区间[-2,2]上的极值、最值,讨论其在[-2,2]上的各个单调区间.(可叫学生演板)