2.原点是实轴与虚轴的交点.( √ )
3.方程x2+x+1=0没有解.( × )
类型一 复数的概念
例1 已知复数z=a2-a-6+i,分别求出满足下列条件的实数a的值:
(1)z是实数;(2)z是虚数;(3)z是0.
考点 复数的概念
题点 由复数的分类求未知数
解 由a2-a-6=0,解得a=-2或a=3.
由a2+2a-15=0,解得a=-5或a=3.
由a2-4≠0,解得a≠±2.
(1)由a2+2a-15=0且a2-4≠0,
得a=-5或a=3,
∴当a=-5或a=3时,z为实数.
(2)由a2+2a-15≠0且a2-4≠0,
得a≠-5且a≠3且a≠±2,
∴当a≠-5且a≠3且a≠±2时,z是虚数.
(3)由a2-a-6=0且a2+2a-15=0,得a=3,
∴当a=3时,z=0.
引申探究
例1中条件不变,若z为纯虚数,是否存在这样的实数a,若存在,求出a,若不存在,请说明理由.
解 由a2-a-6=0且a2+2a-15≠0,
且a2-4≠0,得a无解,
∴不存在实数a,使z为纯虚数.
反思与感悟 (1)正确确定复数的实、虚部是准确理解复数的有关概念(如实数、虚数、纯虚数、相等复数、共轭复数、复数的模)的前提.