答案
1. (1)×(2)√(3)√(4)√ 2. C 3. B 4. D 5. B 6. C 7. C 8.
9. 设"甲胜"、"和棋"分别为事件A,B,发生的概率分别为P(A),P(B),则P(A∪B)=P(A)+P(B)=0.8,
∴P(A)=0.8-P(B)=0.8-0.5=0.3.
故"甲获胜"的概率是0.3.
10. 从袋中任取一球,记"得到红球","得到黑球","得到黄球","得到绿球"分别为事件A、B、C、D,则有
P(B∪C)=P(B)+P(C)= ,
P(C∪D)=P(C)+P(D)= ,
P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)= .
将上述三式联立,解得
P(B)= ,P(C)= ,P(D)= .
故"得到黑球","得到黄球","得到绿球"的概率分别是,, .
11. 设响第一声被接的概率为P1,响第二、三、四声被接的概率分别为P2,P3,P4,则
②-①得P3-P1=0.15,④
③-(①+②)得P4-P2=0.05.⑤
④+⑤得P3+P4-(P1+P2)=0.2.
∴P3+P4=0.2+0.3=0.5.
∴响第三声或第四声被接的概率为0.5.
12. 设水位在[a,b)范围内的概率为P([a,b)).由于水位在各范围内对应的事件是互斥的,由概率加法公式得:
(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))
=0.28+0.38+0.16=0.82.
(2)P([8,12))=P([8,10))+P([10,12))
=0.1+0.28=0.38.
(3)P([14,18))=P([14,16))+P([16,18)) =0.16+0.08=0.24.